Herança - History, Heritage and Culture Journal

2025, 8(4) ISSN: 2184-3090

https://revistaheranca.com

Research Article

The Development of Bionic Porcelain Techniques and the Representation of Nature in Aesthetic Form

Ying Bai 📵 1,2, Tengku Intan Suzila T.S 📵 3, Zahirah Harun 🗓 4*

- ¹ PhD candidate, College of Creative Arts, Universiti Teknologi MARA Perak, 32610 Seri iskandar, Perak Darul Ridzuan, Malaysia
- ² Associate Professor, College of Fine Arts, Xianyang Normal University, 71200, China
- ³ Associate Professor, Doctor, Academy of Language Studies, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Razak, Jengka, Pahang, Malaysia
- ⁴ Senior Lecturer, Doctor, College of Creative Arts, Universiti Teknologi MARA Perak, 32610 Seri iskandar, Perak Darul Ridzuan, Malaysia
- * Corresponding Author: zahir800@uitm.edu.my

Citation: Bai, Y., Suzila T.S., T. I., & Harun, Z. (2025). The development of bionic porcelain techniques and the representation of nature in aesthetic form. *Herança*, 8(4).

ARTICLE INFO

ABSTRACT

Received: 10 Jul 2025 Accepted: 27 Oct 2025

Ceramics have long incorporated bionic motifs inspired by nature, serving both aesthetic and functional purposes across different dynasties. This study explores the role of bionic motifs in ancient ceramics, their structural and artistic significance, the impact of modern fabrication techniques, and the integration of sustainability in ceramic design. A qualitative research approach was employed, combining semi-structured interviews with ceramic experts and visual analysis of historical artifacts from the Tang, Ming, and Qing Dynasties. Additionally, secondary data from academic sources provided insights into the evolution of biomimicry in porcelain design. The findings reveal that bionic motifs such as fish scales and bamboo joints were deeply rooted in cultural symbolism while also enhancing ceramic durability and usability. Digital fabrication techniques like 3D printing and Computer Numerical Control (CNC) engraving have enabled precise replication of these motifs, though challenges such as high costs, material compatibility, and loss of handcrafted authenticity persist. The study also highlights a growing emphasis on eco-friendly materials, intelligent glazing, and self-cleaning surfaces in contemporary biomimetic ceramics. These findings contribute to a deeper understanding of biomimicry in ceramics, emphasizing its role in preserving cultural heritage while promoting technological advancements, sustainability, and innovation in modern porcelain design. Future research could explore advanced fabrication techniques and sustainable biomimetic materials in ceramic design. Additionally, further studies may examine the integration of smart technologies to enhance functionality and efficiency in porcelain production.

Keywords: Bionic Motifs; Ceramics, Biomimicry; Digital Fabrication; Sustainable Ceramic Design; Cultural Symbolism.

INTRODUCTION

Nature has long been a source of inspiration for art, architecture, and design. From the delicate symmetry of a flower to the intricate structure of a seashell, natural forms have influenced creative expressions across cultures and time periods. According to Wang et al. (2021), traditional Chinese ceramics were deeply rooted in biomimicry, drawing from nature's textures, structures, and patterns to enhance both aesthetics and functionality. This practice reflects an enduring artistic philosophy that seeks to harmonize human artisanship with the organic beauty of the natural world.

The earliest ceramic art was more advanced in its appreciation of organic shapes, especially in China. Fan (2022) also indicates that artisans in the Tang, Song, Ming, and Qing dynasties frequently used the designs of fish scales, bamboo joints, and bird feathers. They were not just ornamental but had symbolic and philosophical meaning and represented cultural values and a spiritual belief. In addition, archaeology has shown that ceramic artists used structures to mimic biomimicry, adopting shell-like twists and plant-based reinforcements to enhance the longevity and functionality of pottery pots (Kumar et al., 2024). This solution points to the fusion of early

artisanship with the material revolution.

Recent developments in bionic engineering and material science have enabled further course-correcting of the porcelain/natural aesthetic interface, as applied to current ceramics technology. Banica et al. (2024) illustrate how new technologies, including 3D printing and CNC engravings on smart glazing, are intertwined with traditional art with the application of modernity. This has not only been able to save the cultural heritage of bionic ceramics but has also been in a position to expand the potential in creativity, such that the elements of nature and art of ceramics remain useful in this era.

Problem Statement

The integration of bionic elements in Chinese ceramics has a long history, yet there is limited research on how these motifs evolved across different dynasties and how modern technologies can enhance traditional designs. While ancient artisans skillfully incorporated natural textures and structures into porcelain, the transition of these elements into contemporary ceramic innovation remains underexplored. The lack of systematic analysis on both historical and modern bionic techniques hinders a deeper understanding of their artistic and functional significance. This study addresses this gap by examining traditional bionic motifs and exploring how modern fabrication methods can revitalize their application in contemporary porcelain.

Research Objectives

- To analyze the role of bionic motifs such as fish scales, bamboo joints in the aesthetic and structural design of ancient ceramics.
- To study the influence of modern bionic techniques, such as 3D printing and CNC engraving, on the innovation and material adaptation of contemporary porcelain.
- To conduct a visual analysis of ceramic artifacts from the Tang, Ming, and Qing dynasties, examining the application of natural textures, organic motifs, and structural biomimicry in their design.

Significance of the Study

This study deepens the understanding of bionic motifs in Chinese ceramics by focusing on the Tang, Ming, and Qing dynasties, periods selected for their artistic richness, technological innovation, and strong representation of biomimicry in ceramic design. These dynasties exemplify the evolution of natural motifs, both aesthetically and functionally, in response to cultural, philosophical, and material influences. By analyzing artifacts from these eras, the study highlights how traditional craftsmanship integrated nature-inspired forms with structural ingenuity. Furthermore, it examines how modern fabrication methods, such as 3D printing and CNC engraving, can replicate and expand upon these historical motifs. The research offers valuable insights for contemporary ceramic artists, designers, and scholars, supporting the preservation of cultural heritage while promoting sustainable, technologically advanced ceramic practices. It also informs future innovation in the integration of biomimicry within both artistic expression and functional ceramic design.

LITERATURE REVIEW

Bionic Motifs in Ancient Ceramics

Ancient ceramics feature the bionic motifs that show integration of natural form into artistic expression and the designs were a replica of the beauty and functionality of nature. Cidade et al. (2022) define bionic motifs as decorative and structural elements mimicking the appearance of fish scales, bamboo joints, and floral patterns. The use of these organic patterns not only beautifies ceramic surfaces but also reinforces physical integrity of the pieces, signaling a sophisticated knowledge of biomimicry in ancient craftsmanship.

Chinese ceramic art has exhibited a close connection with nature all along. The ceramic artifacts in the Tang Dynasty usually contained design resembling animals and plants, signifying vibrancy and harmony with the universe (Quanjin & Simatrang, 2024). These patterns were selected to convey cultural stories designed with a lot of sophistication to appear as natural. Sancai-glazed ceramics a feature of Tang craftsmanship had vitalistic figures of animals and floras that were commonly applied in funerary items as a symbol of defense and abundance. Ming Dynasty blue-and-white porcelain had reached such artistic heights that natural motifs had been used to express the purity and longevity (Xu & Puntien, 2024). The Ming porcelain traded, especially the wares of Jingdezhen kilns, featured detailed dragon, lotus, and wave images, which balanced imperial power and harmony with nature.

These patterns are also reflected in Qing Dynasty ceramics, as the craftsmen improved their skills to produce more ornate and delicate natural designs. Cobalt blue underglaze painting and famille rose enameling (techniques to achieve more intricate detail and greater color saturation) were also employed (Taylor, 2020). The development of design complexity, according to Udris et al. (2023), denotes a complex fusion of the esthetic values and material science. Design elements like the use of dragon-and-clouds patterns, peony blossoms and wave-like designs became common as a symbol of imperial authority, wealth and harmony with the natural world (Kelun, 2004). Not only do these bionic motifs demonstrate past artistic techniques but they also create a legacy, which provokes present artistic techniques of ceramic sculptures.

Structural Biomimicry in Porcelain Design

Thus, structural biomimicry in porcelain design is defined as the precise imitation of natural structural forms to both improve the visuals and functionality of ceramic products. As cited by Ahamed, Wang and Hazell (2022), structural biomimicry is the process of designing parts, like the layered composition of a shell or the branching patterns of a tree, into a porcelain artifact. Building upon the look of the ceramics, this genuine approach makes certain they are durable, and the performance is improved.

Chinese ceramic artisans historically apply Biomimicry quickly and intuitively, in response to challenges of design and construction. For example, during the Tang and Ming dynasty techniques were used to create porcelain vessels with improved structural integrity and load bearing capabilities that emulated natural forms (Harrer, 2010). The artisans' deep understanding of natural engineering lay in their ability to create these innovations, which allowed for the creation of thinner and more elegant wares that, nevertheless, possessed great strength.

New archaeological studies have revealed that these ancient practices foreshadowed modern engineering ideas. Zhang et al. (2015) argue that biomimetic structures in ceramics were not only use to enhance thermal stability, stress resistance but also helped with a culturally resonant aesthetic language. Furthermore, Finlay (2010) suggests that these natural analogues had been critical to the development of porcelain resistant to the daily use as well as art; in imitation of nature. The case of ancient artisans' integration of the wisdom of nature in material design demonstrates the essentially eternal importance of structural biomimicry in porcelain design, by providing the basis for contemporary innovations in ceramic technology.

Modern Bionic Techniques in Ceramics

With advancements in technology, the traditional artisanship is evolving in the context of scientific principles, especially in ceramics. Modern porcelain manufacturing incorporates bionic techniques to replicate natural structures and textures using advanced fabrication methods. Sun et al. (2021) state that modern bionic ceramics are those techniques of ceramics which used advanced manufacturing technologies, including 3D printing, CNC engrave and intelligent glaze, to mimic natural forms and to up material properties. Therefore, these applied techniques preserve ceramic design's traditional aesthetics, meanwhile increasing precision, durability, and function.

One of the most important bionic ceramics innovations is 3D printing, which allows for the precise replication of natural structures, such as honeycomb patterns and shell-like layers, to improve strength and reduce material waste (Chen et al. 2023). As shown in Figure 1 below, honeycomb-structured ceramics can be layered and staggered to enhance mechanical properties, making them ideal for industrial applications requiring high durability and impact resistance. Moreover, CNC engraving also makes it possible to reproduce details on the surface of any coverage or motifs such as fish scale and floral patterns in an extremely accurate manner. Intelligent glazing techniques also emerged, such as natural iridescence and self-cleaning properties that mimic lotus leaf, preventing dirt accumulation on ceramic surfaces (Motamedi et al., 2018). At the same time, the applications of bionic principles in these modern innovations do not only provide new areas of creative possibilities to ceramic artists but also offer new approaches to industrial advancements.

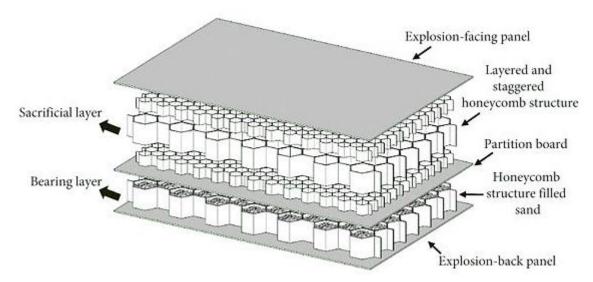


Figure 1. Multi-Layered Honeycomb-Structured Ceramics for Enhanced Strength and Impact Resistance (Source: Li et al. 2020)

Biomimicry Theory in Ceramic Design

Biomimicry theory deals with inspiring human innovation in design and engineering by nature forms, structures, and processes. According to Jiang (2024), biomimicry is an idea, which in its origins was based on the premise that nature has perfected extremely effective and environmentally friendly solutions over millions of years and these can be applied to improve human-made artifacts. In ceramic design, in particular, this theory is particularly relevant, as artisans have customarily based their designs on biological elements to improve aesthetics as well as functionality.

Although the replication of fish scales, bamboo joints, and floral patterns in traditional Chinese ceramics are not purely decorative, they do help in creating better structural integrity and increasing the usability of porcelain. Ancient craft artisans, without understanding of modern scientific understanding, leveraged biomimetic strategies to produce lightweight, durable, visually harmonious ceramics (Mazzoleni, 2013). Further application of layered glazing techniques that imitate the protective layers of shells suggest how biomimicry influenced early material innovation.

Today, biomimicry is no longer an issue for modern ceramics, given it is induced by innovative technologies like 3D printing and CNC engraving, which allow exact reproduction of organic structures. They follow modern fabrication methods such as those that mimic natural textures, self-cleaning surfaces and optimized forms to improve both artistic expression and material performance (Behera & Behera, 2022). By embracing biomimicry in ceramic design, traditional artisanship merges with scientific innovation, ensuring that nature-inspired aesthetics remain relevant and impactful in modern ceramic advancements.

Literature Gap

Existing literature has extensively documented the aesthetic and symbolic significance of bionic motifs in ancient Chinese ceramics, with particular attention to cultural meanings and visual representation. Recent studies have also explored technological advancements such as 3D printing and CNC engraving, focusing on their role in enhancing precision and creative flexibility in ceramic design. Despite these contributions, a clear connection between historical bionic motifs and modern fabrication techniques remains underexplored. Current research rarely provides a cohesive framework for integrating traditional biomimetic elements—such as fish scales and bamboo joints, into contemporary ceramic production. The separation of historical artistry and modern engineering limits understanding of how traditional motifs can evolve through technological innovation. Additionally, the functional and structural aspects of these motifs have received limited attention, as most analyses concentrate on their decorative or symbolic roles. This study addresses these gaps by examining the transition of bionic motifs from ancient craftsmanship to modern digital fabrication. Through expert insights and artifact analysis, it highlights the potential for combining cultural heritage with technological progress, offering a more holistic understanding of biomimicry in both traditional and contemporary ceramic design.

METHODOLOGY

Research Method

This study adopts a qualitative research method, ideal for exploring the artistic, historical, and technological aspects of bionic ceramics. As Oranga & Matere (2023) note, qualitative research helps understand human experiences and cultural phenomena through non-numerical data like interviews and textual analysis. This method is suited for examining bionic motifs in ancient ceramics, modern techniques, and visual representations. It allows for in-depth interpretation of artistic elements and expert insights, offering a comprehensive understanding of symbolic meanings and historical influences in ceramic designs.

Research Design

This study combines both primary and secondary data to thoroughly investigate the research objectives. Primary data is collected through semi-structured interviews with five experts in ceramic history, design, and material science. These interviews balance guided questioning with open discussion, focusing on bionic motifs, fabrication techniques, and ceramic evolution. The secondary data includes literature such as research articles, books, and museum archives, providing historical context and technical information on both ancient and modern ceramics. Additionally, secondary data includes images of ceramic artifacts from online sources, analyzed to identify bionic elements. This mixed-method approach strengthens the study by combining expert insights with historical and artistic evidence.

Data Collection

The primary data is collected through semi-structured interviews with five experts specializing in different aspects of ceramic design and history. These include a ceramic historian, who a material scientist, who explains the structural and functional aspects of biomimicry in ceramics. Additionally, a professional provides insights into ancient Chinese porcelain and its cultural significance, and ceramic artist is interviewed to understand how traditional bionic motifs are being adapted in contemporary porcelain. A museum curator contributes knowledge on historical ceramic artifacts, while an archaeologist offers expertise on the excavation and interpretation of ancient ceramics. The secondary data is gathered from academic research, historical records, and ceramic images collected from reliable online databases and museum archives. These databases are illustrated in Table 1 below:

No.	Database Name	Type of Source
1	Google Scholar	Academic research articles
2	JSTOR	Historical and cultural studies
3	Science Direct	Material science and ceramic innovations
4	China Online Museum	Artifact images and descriptions
5	Metropolitan Museum of Art	Museum collections and ceramic archives
6	Research Gate	Papers on ceramic design and biomimicry

Table 1. Databases

Research Sample

There are two main components to the research sample: expert participants and ceramic artifacts. The five experts give practical input on the aesthetic, technological, and structural aspects of bionic ceramics. Four ceramic artifacts from different dynasties were selected for visual analysis. These artifacts include:

- A Ming Dynasty Blue-and-White Plate featuring fish motifs.
- A Qing Dynasty Porcelain Bowl with structural biomimicry.
- A Tang Dynasty Sancai-Glazed Horse Figurine, highlighting animal-inspired design.
- A Qing Dynasty Blue-and-White Dragon Plate, emphasizing natural symbolism.

These samples allow for a comparative analysis of historical bionic motifs and their transformation in modern ceramic art.

Data Analysis

The collected data is analyzed using thematic analysis, a widely used qualitative method for identifying patterns within textual data. According to Joffe (2011), thematic analysis is a process of systematically coding qualitative data to identify recurring themes and insights. This method is useful because it can help identify

common perspectives held by experts regarding the bionic motifs, modern fabrication techniques, and their cultural significance. This is a justified method used for thematic analysis because of its flexibility and ability to grasp treatment of the nuances meanings, in other terms it can be applied in the understanding of artistic and historical narratives.

Additionally, for the third research objective pertaining to visual analysis, aesthetic and structural components of two ceramic items are examined. In this thesis, the analysis is directed towards natural textures, organic motifs and biomimetic structures found in Tang, Ming and Qing Dynasty ceramics. The study compares visual data to historical research and identifies patterns of biomimicry and the ways that they changed through time.

Ethical Standards

This study follows strict ethical research guidelines to ensure the integrity and reliability of data collection. Informed consent is obtained from all interview participants, ensuring voluntary participation and confidentiality. Participants have the right to withdraw from the study at any stage. For secondary data, proper citations and acknowledgments are provided to respect intellectual property rights. Since this study includes visual analysis of publicly available ceramic images, all sources are credited appropriately to maintain academic transparency.

FINDINGS AND RESULTS

The below themes illustrated in the Figure 2 are taken from the interview guides that are going to be analyzed in this section:

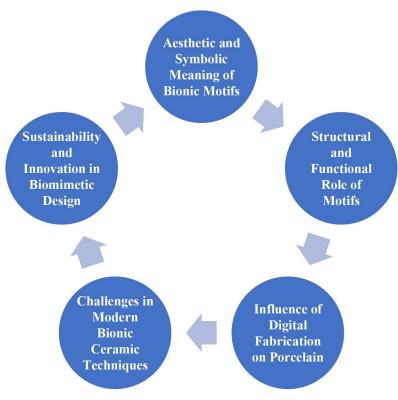


Figure 2. Identified Themes (Source: Author)

Thematic Analysis

The thematic analysis process began by identifying key phrases from interview transcripts, which were then grouped into broader categories. Codes related to symbolic meaning, structural reinforcement, and cultural influence formed the theme "Aesthetic and Symbolic Meaning of Bionic Motifs." Discussions on ceramic durability, weight distribution, and surface texture were categorized under "Structural and Functional Role of Motifs." Material challenges, accessibility difficulties, and production problems were grouped under "Challenges of Modern Bionic Ceramic Techniques." Other themes included "Sustainability and Innovation in Biomimetic Design" and "Influence of Digital Fabrication on Porcelain." These themes highlight the historical, technological,

and sustainability aspects of bionic ceramics, ensuring that the final analysis accurately reflects participant insights (see Table 2: Themes and Their Description).

Table 2. Themes and Description

Sr No.	Themes	Description
1	Aesthetic and Symbolic Meaning of Bionic Motifs	This theme brings attention to the bionic motif of fish scales and bamboo joints, which earned cultural and philosophical value in ceramics that spanned dynasties.
2	Structural and Functional Role of Motifs	This theme examines how the bionic motif of bamboo reinforced vessels and the diminishment of surface tension by fish scale engravings restricts vessel chipping.
3	Influence of Digital Fabrication on Porcelain	This theme describes the effects of contemporary technologies, such as 3D printing and CNC engraving, which enhance the reproduction of traditional bionic motifs.
4	Challenges in Modern Bionic Ceramic Techniques	This theme assesses the technical and economic challenges of adopting new biomimicry technologies such as high costs, material compatibility concerns, and ease of access for traditional artisans.
5	Sustainability and Innovation in Biomimetic Design	This theme explores the use of eco-friendly materials, intelligent glazing, and digital fabrication to create sustainable ceramic products while preserving traditional artistry.

Aesthetic and Symbolic Meaning of Bionic Motifs

In ancient ceramics, the bionic motifs were also decorative and culturally significant, such as those based on fish scales and bamboo joints. Prosperity was symbolised by fish scales, and resilience, integrity and bamboo. These had also become a motif common to Tang, Ming, and Qing Dynasty porcelain and represented harmony with nature. The artisans to add aesthetic value and symbolic value to them used the painting, carving and relief techniques. The following are different responses given by the respondents:

Respondent 1:

"Ancient artisans watched nature closely and rendered its forms in ceramics by hand carving or by moulding. Texture was provided by bamboo joints, which were used for vessel shapes, as well as symbology through fish scale patterns. The motifs increasingly became superficial until deeper cultural meanings came to be associated with them."

Respondent 2:

"Fish scales and bamboo joints were commonly seen in porcelain during the Tang and Ming dynasties. Artisans applied engraved or relief techniques to mimic natural textures, ensuring that ceramics reflected both artistic beauty and functional strength. These motifs symbolized resilience, prosperity, and harmony with nature."

Respondent 3:

"Ancient Chinese ceramics often imitated the patterns and structures found in nature. Fish scales represented abundance and were painted onto porcelain surfaces, especially in blue-and-white Ming Dynasty wares. Bamboo joints, on the other hand, were integrated into teapots and vases, symbolizing strength and resilience in traditional Chinese culture."

Respondent 4:

"Porcelain artisans often incorporated motifs based on cultural symbolism. In Confucian thought, bamboo symbolized integrity and perseverance, influencing its frequent use in ceramic forms. Fish, associated with wealth and fertility in Chinese folklore, became a popular motif in Ming Dynasty blue-and-white porcelain, reinforcing cultural narratives through artistic expression."

Respondent 5:

"Cultural beliefs shaped ceramic aesthetics by linking motifs to values and traditions. The use of fish scales in porcelain was inspired by their association with success in imperial examinations, as the myth of the carp

transforming into a dragon symbolized ambition. Bamboo's resilience made it a common motif in scholar-literati porcelain, reflecting wisdom and endurance."

Interpretation and Analysis

The responses highlight the dual role of bionic motifs in ancient ceramics: aesthetic refinement and cultural symbolism. Respondents 1 and 2 emphasized the artistic techniques used, such as carving, molding, and engraving, ensuring both beauty and functionality. Respondent 3 noted their structural benefits, with fish scales used for surface texture and bamboo joints reinforcing durability in teapots and vases. Meanwhile, Respondents 4 and 5 characterised bamboo as Confucian integrity and fish scales as myths of success; they link Confucian integrity to bamboo and myths of success to fish scales. These findings are shown to be an example of how bionic motifs in ceramics combined artistic craftsmanship and deep cultural significance under different dynasties.

Structural and Functional Role of Motifs

Bionic motifs on ancient Chinese ceramics such as fish scales, bamboo joints, defy aesthetic appeal; they improved the structural integrity and functionality of ceramics. Reinforced vessels were designed by bamboo and fish scale engravings reduced surface tension and increased grip. Below are the responses of respondents.

Respondent 1:

"Ceramics were enhanced in elegance by the introduction of bionic motifs, bringing their intricate details to represent nature's beauty. Fish scale patterns made rhythmical visual effects during the Ming Dynasty, whereas bamboo joints helped strengthen the vessels' structures so that cracks would not happen and make it more durable. These elements found an admirable balance between artistic refinement and practical functionality."

Respondent 2:

"The use of fish scales and bamboo joints was not purely decorative; they also influenced the overall strength of ceramics. Bamboo joint-inspired forms provided better weight distribution in vases and teapots, while fish scale engravings reduced surface tension, making glazed surfaces more resistant to chipping over time."

Respondent 3:

"In the Tang Dynasty, sancai-glazed ceramics adopted flowing natural patterns to enhance surface texture, while Ming blue-and-white porcelain utilized fish motifs for cultural storytelling. Bamboo-inspired structures made porcelain handles and spouts more resistant to thermal expansion, improving their functional lifespan in daily use."

Respondent 4:

"These motifs reflected a philosophical appreciation for nature while also serving practical purposes. The smooth, overlapping arrangement of fish scales in pottery reduced stress points, making ceramics less fragile. Bamboo joint designs strengthened cylindrical vessels, ensuring they could withstand transportation and prolonged usage in ancient households."

Respondent 5:

"Bionic motifs made ceramics more visually dynamic while reinforcing their structure. For example, Qing Dynasty porcelain often featured embossed fish scales that enhanced grip and prevented slippage. Meanwhile, bamboo-inspired contours improved stacking efficiency, allowing storage and handling of porcelain items to be more practical and efficient."

• Interpretation and Analysis

The responses underscore the functional benefits of bionic motifs beyond their aesthetic value. Respondents 1 and 2 highlight how bamboo and fish scale patterns enhanced durability and strength. Bamboo joints improved weight distribution and resistance to breakage, while fish scales helped with surface tension reduction, preventing chipping. Respondent 3 notes the specific application of these motifs in Tang and Ming ceramics, particularly in improving ceramic handles and spouts to prevent thermal expansion. Respondent 4 emphasizes how fish scales and bamboo motifs not only served aesthetic functions but also contributed to practicality, reinforcing the functional durability of ceramics in daily use. Respondent 5 discusses the impact on stacking efficiency, highlighting how bamboo-inspired contours made porcelain handling more efficient. Overall, the motifs combined artistic refinement with practical functionality, showing how design elements enhanced both the strength and usability of ceramics.

Influence of Digital Fabrication on Porcelain

Digital fabrication techniques such as 3D printing and CNC engraving have transformed porcelain production

by enhancing precision, efficiency, and creative possibilities. These technologies bridge the gap between the tradition and modernity by allowing artisans to reproduce intricate bionic motifs with great precision much like these knew to centuries ago while 3D printing gives artisans a channel to bring forth complex, nature inspired forms and CNC engraving ensures uniformity in the oftentimes handmade, delicate patterns. Below are the responses of the respondents:

Respondent 1:

"By using 3D printing, a highly detailed and intricate design was done that could not be done by hand in porcelain production. With CNC engraving, the reproduction of traditional motifs acquires precision, but by the same condition maintaining the heritage culture and modernizing the product. These technologies have made contemporary ceramic artists more efficient, less wasteful, and able to realize more creative possibilities."

Respondent 2:

"The advancement of technology has also seen the use of digital fabrication in the manufacturing of porcelain products making it faster and precise. The use of 3D technique in changing the shape and form of ceramics involves less wastage form the natural world and the use of CNC engraving adds uniformity to the physical designs through technology. This has improved both the creative work and the industrial suitably of ceramics work in art design."

Respondent 3:

"The traditional porcelain making came as hand carving; it was a slow process and there were always inconsistencies." In CNC engraving, let us reproduce high detailed designs, with precise exact precision and 3D printing lets us layer extremely complex structures, even mimic with natural like fish scale like bamboo joints with great precision."

Respondent 4:

"With the advent of modern technologies, ceramic artistry has been significantly influenced. With 3D printing, first one can prototype very quickly, and therefore try out new shape distortions that are inspired by biomimicry.' surface detailing takes an enhancement with CNC, so even the most delicate textures like the veins of a leaf can be reproduced with perfection."

Respondent 5:

"3D printing changes that; organic, nature inspired forms that previously were not amenable to being sculpted are now things that could be experimented with through 3D printing. CNC engraving has meanwhile enabled the restoration and replication of historical ceramic designs to facilitate preserving and recreation of ancient artistic techniques."

Interpretation and Analysis

The responses reveal how digital fabrication techniques like 3D printing and CNC engraving have revolutionized porcelain production by enhancing precision, efficiency, and creative potential. Respondent 1 and Respondent 2 emphasized that these technologies preserve traditional motifs while ensuring greater accuracy. 3D printing allows for the creation of complex, nature-inspired designs that were previously difficult to sculpt by hand, as noted by Respondent 5. Respondent 3 highlighted how CNC engraving improves precision, addressing traditional inconsistencies. Respondent 4 pointed out that these tools enable experimentation with new shapes and textures, blending heritage with modern innovation.

Challenges in Modern Bionic Ceramic Techniques

Since 3D printing and CNC engraving have been adopt widely in the development of modern ceramics, biomimicry is not an easy task. Due to the high costs, and low availability, these technologies are hard for the traditional artisans to incorporate. However, material compatibility restraints and the overall limitations associated with greater incorporation of digital fabrication present a challenge. The fine line between automating production and the manual artistry inherent in the making of ceramics is a crucial factor considered in the production of ceramics in the modern world. The responses of the respondents are provided below:

Respondent 1:

"Balancing technological precision with the organic imperfections characteristic of traditional ceramics is a large challenge for the creation of ceramics as part of a morphing robot. 3D printing and CNC engraving are high on accuracy, although they end up not feeling as fluid as handmade designs can be. However, such technologies also enable fabrication of more durable, lightweight, and structurally complex ceramic pieces."

Respondent 2:

"One challenge is the cost and availability of advanced ceramic fabrication technologies." Other traditional artisans do not have the resources to incorporate 3D printing or CNC engraving in their work. However, these methods also give the artists more freedom in design, such as here, to explore the intricate bionic structures without much waste of material."

Respondent 3:

"The first challenge is using traditional clay materials in a modern manufacturing environment. Not all ceramic compositions can be 3D printed, and they must be degrees of consistency and drying time very precise. However, the advantage is that biomimicry can now be investigated at the microscopic level to produce stronger, more functional ceramic products."

Respondent 4:

"Advanced manufacturing methods require specialized knowledge, which creates a learning curve for traditional ceramicists. However, an exciting opportunity is the ability to experiment with self-cleaning and heat-resistant surfaces, mimicking natural phenomena like lotus leaves and seashells to improve both the aesthetics and functionality of porcelain."

Respondent 5:

"Integrating biomimicry into advanced ceramic production poses technical challenges, such as ensuring proper glaze adhesion and surface durability in 3D-printed ceramics. However, it opens new possibilities for mass customization, where artists can design unique, nature-inspired pieces while maintaining consistency and efficiency in large-scale production."

• Interpretation and Analysis

The responses highlight several challenges in incorporating modern technologies like 3D printing and CNC engraving into traditional ceramic practices. Respondents 1 and 2 noted that while these technologies offer high precision, they may lack the organic fluidity inherent in handmade ceramics, leading to a loss of traditional artistry. Respondent 3 emphasized material compatibility issues, as not all clay compositions are suitable for 3D printing. Respondent 4 highlighted the learning curve carried out by traditional artisans regarding these technologies. However, amidst these challenges, Respondent 5 drew out new prospects to carry mass customization and biomimicry to achieve not only unique but also likewise functional designs with higher efficiency and sustainability.

Sustainability and Innovation in Biomimetic Design

Modern biomimetic ceramic design gives importance to eco-friendly materials, digital fabrication and intelligent glazing materials to make it sustainable through life cycle of product. 3D printing technology helps minimize material waste, while the use of biodegradable clay reinforces an environmentally conscious approach. Additionally, self-cleaning and heat-resistant surfaces enhance functionality and sustainability for modern applications. The respondents' feedback on these features is summarized below.

Respondent 1:

"Sustainability has been brought into advanced manufacturing of biomimetic ceramics with minimal material waste through 3D printing and minimal resource allocation with CNC engraving. Moreover, modern glazes represent self-cleaning ceramic properties which make the ceramics more durable and environment friendly."

Respondent 2:

"Sustainability in ceramic design is improving through biodegradable clay mixtures and low-energy kiln processes. Contemporary artists use 3D printing to create lightweight, yet strong, biomimetic forms inspired by nature, reducing the environmental impact of traditional ceramic production."

Respondent 3:

"Modern biomimicry in ceramics is not just about aesthetics; it's also about sustainability. Eco-friendly materials, such as recycled porcelain and plant-based glazes, are now being explored. Some artists experiment with naturally inspired cooling surfaces that reduce energy use in architectural ceramics."

Respondent 4:

"The fusion of biomimicry with modern technology has led to innovations like ceramic coatings that mimic lotus leaf self-cleaning properties. These advances enhance both artistic expression and sustainability by

reducing water and detergent usage in everyday ceramic products."

Respondent 5:

"Sustainable biomimetic ceramics allow for mass customization with minimal waste. Digital fabrication enables designers to replicate natural patterns efficiently, while smart glazes ensure longer product lifespans. These innovations maintain traditional aesthetics while making ceramic production more eco-friendly and adaptable to modern needs."

Interpretation and Analysis

The responses highlight the emergent focus on sustainability and innovation in current biomimetic ceramic design. Respondents 1 and 2 pointed out that 3D printing, as well as mixing ceramics with biodegradable clay, saves a lot of material waste and help make ceramics more eco-friendly. Respondent 3 led to the importance of sustainability in modern ceramics through exploration of recycled porcelain and plant based glazes. Respondent 4 talked about how self-cleaning lotus leaf inspired coatings contributed both to functionality and sustainability. Finally, Respondent 5 pointed out that digital fabrication facilitates mass customization at lower cost, with reduced waste while retaining traditional aesthetics. Overall, biomimicry and modern technology have been unified to yield more sustainable ceramic practices, more artistic and more environmentally responsible.

Visual Analysis of Bionic Motifs

Bionic motifs inspired by nature have been part of the ceramic repertoire for a long time and linked to aesthetic values and cultural symbolism. Figures 3 and 4 show traditional blue and white porcelain plates with different natural motifs, each one with a fish and dragons. Both designs focus on flow and movement in some ways, and are different in their symbolic representation, composition, and structural arrangement.

Figure 3. Ming Dynasty Blue-and-White Porcelain Plate Featuring a Fish Motif, Symbolizing Prosperity and Harmony, Surrounded by Aquatic and Floral Patterns (Source: Smithsonian Institution, 2016)

Figure 4. Qing Dynasty Blue-and-White Porcelain Plate Depicting Dragons Intertwined with Cloud Motifs, Representing Imperial Power, Strength, and Divine Protection (Source: Artzze, 2025)

Figures 3 and 4 showcase blue-and-white porcelain plates from different dynasties, both incorporating bionic motifs inspired by nature. While Figure 3 features a fish surrounded by aquatic plants, Figure 4 depicts dragons intertwined with cloud patterns. Both plates emphasize movement and organic forms, yet they differ in symbolism, composition, and artistic execution.

In Figure 3, the fish symbolizes prosperity, abundance, and harmony, a common theme in Ming Dynasty ceramics (Michaelson & Portal, 2006). The smooth curves and flowing lines create a sense of tranquility, reinforced by the symmetrical radial composition. The fish scales are subtly defined, allowing the natural movement of water to be the focal point. In contrast, Figure 4, a Qing Dynasty porcelain plate, features dragons, which symbolize imperial power, strength, and divine protection (Yang, 2013). The elongated, twisting dragons create a dynamic and energetic effect, enhanced by their meticulously detailed scales and limbs, which reflect the Qing Dynasty's preference for intricate ornamentation (Bellemare, 2021).

Both plates integrate bionic motifs, but their execution differs. In Figure 3, the biomimicry is subtle, with stylized fish scales blending seamlessly into the surrounding aquatic forms. The fluid brushwork and open negative space give the plate a harmonious, balanced aesthetic, characteristic of Ming porcelain (Liyao, 2023). Figure 4, however, features dense, interwoven dragons with highly detailed textures, leaving little negative space. This reflects the Qing Dynasty's emphasis on symbolic complexity and imperial grandeur.

The comparison highlights how different dynasties applied biomimicry in porcelain design, with Ming ceramics focusing on elegance and balance, while Qing ceramics emphasized power and opulence. These stylistic differences demonstrate the evolution of bionic motifs in Chinese porcelain, showcasing nature's enduring influence on ceramic artistry.

Figure 5. Qing Dynasty Blue-and-White Porcelain Bowl with Scalloped Rim and Intricate Floral and Animal Motifs (Source: https://www.metmuseum.org/art/collection/search/201056)

Figure 6. Tang Dynasty Sancai-Glazed Ceramic Figurines of a Camel and Mounted Horsemen, Symbolizing Trade and Cultural Exchange (Source: https://www.researchgate.net/figure/Tang-dynasty-618-907-glazed-ceramics-from-Chinese-archaeological-sites-1-Hungye-kiln_fig8_344208334)

Moreover, Figure 5 and Figure 6 above highlight two distinct examples of ceramic craftsmanship, each reflecting different artistic styles, functional purposes, and symbolic representations. Figure 5 is a blue-and-white Qing Dynasty porcelain bowl, while Figure 6 features Tang Dynasty sancai-glazed figurines of a camel and mounted horsemen. While both incorporate bionic elements, their form, material, and artistic approach differ significantly.

Figure 5 demonstrates precision and refinement, characteristic of Qing Dynasty porcelain (Wu, 2021). The bowl's scalloped rim mimics natural curves, integrating structural biomimicry for aesthetic appeal and functional grip. The intricate floral and animal motifs, rendered in blue cobalt glaze, highlight a preference for decorative elegance. The structured, symmetrical patterns highlight the Qing Dynasty's emphasis on order and refinement.

In contrast, Figure 6 represents the Tang Dynasty's dynamic realism, using sancai (three-color) glaze on ceramic figurines. The camel and horsemen figurines reflect the Silk Road's influence, symbolizing trade and cultural exchange. Unlike the highly detailed porcelain of Figure 4, these figures emphasize naturalistic movement and volume, capturing the strength and mobility of animals (Moore, 2018). The flowing glaze and earthy tones mimic organic textures, reinforcing the biomimetic approach in Tang ceramic art.

A key contrast is functionality. Figure 5's porcelain bowl was likely used for decorative or ceremonial purposes, reflecting elite craftsmanship, while Figure 6's figurines were funerary objects, meant to accompany the deceased in the afterlife. This distinction underscores the evolution of ceramic purpose from decorative refinement to cultural storytelling. Both figures demonstrate Chinese artisans' mastery in integrating nature-inspired elements, with Qing ceramics favouring ornamental detail and precision, while Tang ceramics emphasized movement, realism, and symbolic function.

DISCUSSION

This study finds that Chinese ceramics embody bionic motifs for both aesthetic and functional reasons and that these motifs have changed over the course of various dynasties of Chinese ceramics through symbolic, structural biomimicry, and modern fabrication techniques. Fish scales, bamboo joints and animal inspired forms form for cultural beliefs and advances in ceramic craftsmanship. This is consistent with the existing research describing biomimicry in conventional and contemporary ceramic design.

The ancient Chinese ceramics such as Yin and Yang, bird, dragon and crane were made up of bionic motifs used in compliance with cultural and philosophical beliefs. Fish scales represented prosperity and success; bamboo joints conveyed strength and resilience. (Li, 2016). Vasenius and Keskitalo (2024) found that the nature-inspired motifs present on ceramics were not just decorative but were symbolic. Zhou (2024) also observes that in some cases Ming and Qing porcelain used these motifs to convey social status and auspicious things.

The ceramics contributed to integrity and functionality and at the same time were aesthetically pleasing forms. This study demonstrates that the designs of bamboo joints protected vessels from breakage and the engravings of fish scales on the surface helped gripping and preventing the chipping. This is consistent with Yacubov's (2020) who believe that structural biomimicry to ancient Chinese ceramics worked to increase durability and functionality. Wang (2006) research as well demonstrates that there was an intention to lessen risk of thermal expansion and cracking from bamboo motifs included on the ceramic handles and spouts for ergonomic reasons.

Since, these biomimetic elements have also happened in modern ceramic design with digital fabrication techniques like 3D printing and CNC engraving. These technologies allow replicas of traditional bionic motifs where they are possible, and expand the range of creative possibilities. Agreeing with this, Alarifi (2024) posits that digital fabrication had revolutionized ceramic production process by enhancing its accuracy and enabling mass customization of nature inspired pattern. Further, it suggests that through 3D printing the biomimetic textures are layered into contemporary porcelain and strengthen its material strength.

However, issues that limit the application of advanced bionic ceramic techniques are continue to experience. The results of this study show that high costs, material compatibility constrains and accessibility issues are some of the factors that can limit the use of 3D printer and CNC engraving in manufacturing ceramics. This aligns with a study by Pagán et al. (2020), who pointed out that most traditional artisans have inadequate funds or expertise to adopt digital fabrication into their production. However, as emphasized by Cumbajin et al. (2023), precision of the 'digital manufacturing' is somewhat unnatural to offset the organic defects, which form the hallmark of handmade ceramics.

Another important finding of this study is that sustainability and innovation are becoming important buzzwords relating to biomimetic ceramics. Eco-friendly materials, self-cleaning coatings, and smart glasses have become the trend indicating the focus of shift in the manufacturing industry. This is in line with the findings by Gamage (2015), which has observed that modern biomimicry in ceramics manages to retain the traditional motifs but at the same time creates the opportunity to develop sustainable production lines. Consequently, this study demonstrates that bionic motifs in Chinese ceramics have been develop steadily throughout the years, having maintained a well-coordinated progression between heritage and technology. The findings contribute to the advancement of knowledge about biomimicry's influence on ceramic artistry and the relevance of natural motifs in both archaic and modern pottery design.

CONCLUSION

The purpose of this study was to research the use of bionic motifs in Chinese ceramics by discussing its structural and artistic significance, their integration with modern fabrication techniques in ceramic design, and the notion of sustainability during the process of ceramic design. Qualitative research methods were used: expert interview and visual analysis of historical objects used to identify how biomimicry has been used in traditional and contemporary ceramic craft.

This study shows that bionic motifs like fish scales and bamboo joints had both aesthetic and structural reinforcing effects. Deeply embedded in Confucian and Daoist philosophy, these motifs represented resilience, prosperity and harmony, with nature. This also conforms to prior research that point to the cultural symbolism in biomimicry of ancient Chinese ceramics. Biomimicry also resulted in improved functionality according to the study, with bamboo-inspired structures reinforcing ceramic durability and fish scale patterns lowering surface tension to prevent chipping. The research also discusses how digital fabrication techniques including 3D printing and CNC engraving are changing the face of porcelain design. They enable the replication of traditional motifs with precise details while giving creative options. Nevertheless, barriers including cost, material compatibility and loss of handcrafted authenticity have limited the uptake.

The study concludes finally with the increasing importance to the biomimetic design of ceramics with sustainability. With the advancement of modern days of eco-friendly materials, intelligent glazing and self-cleaning surfaces, bionic ceramics are still applicable in today's art and industrial production. Biomimicry connects the traditional craftsmanship with the technological innovation, and is still influencing historical as well as modern ceramic artistry, by preserving cultural heritage using environmental friendly and sustainable approaches. The contribution of this study is towards a more meaningful understanding of biomimetic ceramics as an art and applied material.

This research broadens the understanding of biomimicry in art and design by revealing how nature-inspired motifs in ceramics serve not only decorative purposes but also structural and functional roles. By examining both historical and modern techniques, the study demonstrates that biomimicry is not a passive imitation of nature but an active design principle that bridges tradition and innovation. It challenges the notion that artistry and technology exist separately, showing instead that digital fabrication can preserve cultural heritage while advancing sustainable design. This integrated perspective encourages artists and designers to view biomimicry as a dynamic, evolving methodology rooted in both function and meaning.

Study Limitations

While this study provides valuable insights into bionic motifs in Chinese ceramics, it has some limitations. The research relies on qualitative data from expert interviews and visual analysis, which may introduce subjectivity in interpretation. Additionally, the study focuses on specific dynasties (Tang, Ming, Qing), limiting a broader historical scope. Lastly, technological advancements in modern biomimetic ceramics are constantly evolving, requiring ongoing research for more comprehensive analysis. Practical implications of this study include guiding contemporary ceramic designers in integrating bionic motifs for both aesthetic and functional purposes, as well as encouraging the use of sustainable materials in modern ceramic production.

REFERENCES

Ahamed, M. K., Wang, H., & Hazell, P. J. (2022). From biology to biomimicry: Using nature to build better structures—A review. *Construction and Building Materials*, 320, 126195.

Alarifi, I. M. (2024). Revolutionising fabrication advances and applications of 3D printing with composite materials: a review. *Virtual and Physical Prototyping*, 19(1), e2390504.

Artzze. (2025). A late Qing Dynasty Chinese porcelain blue white Man Tang Fu Ji mark 4 character mark dish. Retrieved March 1, 2025, from Artzze.com website: <a href="https://www.artzze.com/shop/asian-art/chinese-art/chinese-art/chinese-ceramics-works-of-art/a-late-qing-dynasty-chinese-porcelain-blue-white-man-tang-fu-ji-mark-4-character-mark-dish

Bănică, C. F., Sover, A., & Anghel, D. C. (2024). Printing the future layer by layer: A comprehensive exploration of additive manufacturing in the era of Industry 4.0. *Applied Sciences*, *14*(21), 9919.

Basin | Chinese, for British market | The Metropolitan Museum of Art. (2024). Basin | Chinese, for British market. Retrieved March 1, 2025, from The Metropolitan Museum of Art website: https://www.metmuseum.org/art/collection/search/201056

Behera, A., & Behera, A. (2022). Self-cleaning materials. In *Advanced Materials: A introduction to modern materials science* (pp. 359-394).

Bellemare, J. (2021). "A New Creation of This Dynasty": Enamels, Glass, and the Deployment of Color in Qing China, 1700–1735. (Doctoral dissertation, Bard Graduate Center: Decorative Arts, Design History, Material Culture).

Chen, W., Gan, L., & Huang, J. (2023). Design, manufacturing and functions of pore-structured materials: From biomimetics to artificial. *Biomimetics*, 8(2), 140.

Cidade, M. K., Perini, J. T., & Palombini, F. L. (2022). Bionics for inspiration: A new look at Brazilian natural materials for application in sustainable jewelry. In *Bionics and sustainable design* (pp. 195-223). Springer Nature Singapore.

Cumbajin, E., Rodrigues, N., Costa, P., Miragaia, R., Frazão, L., Costa, N., ... & Pereira, A. (2023). A real-time automated defect detection system for ceramic pieces manufacturing process based on computer vision with deep learning. *Sensors*, 24(1), 232.

Fan, X. (2022). *Interaction, appropriation, and adaptation: Transculturality of seventeenth-and eighteenth-century Chinese and European porcelain.* (Doctoral dissertation).

Finlay, R. (2010). The pilgrim art: cultures of porcelain in world history (Vol. 11). Univ of California Press.

Gamage, A. U. (2015). *Exploring a Biomimicry Approach to Enhance Ecological Sustainability in Architecture*. (Unpublished master's thesis).

Harrer, A. (2010). Fan-shaped bracket sets and their application in religious timber architecture of Shanxi province. (Doctoral dissertation, University of Pennsylvania).

Jiang, M., Deng, W., & Lin, H. (2024). Sustainability through Biomimicry: A Comprehensive Review of Bionic Design Applications. *Biomimetics*, 9(9), 507.

Joffe, H. (2011). Thematic analysis. In Qualitative research methods in mental health and psychotherapy: A guide for students and practitioners (pp. 209-223).

Kelun, C. (2004). Chinese porcelain: Art, elegance, and appreciation. Long River Press.

Kumar, R., Rezapourian, M., Rahmani, R., Maurya, H. S., Kamboj, N., & Hussainova, I. (2024). Bioinspired and multifunctional tribological materials for sliding, erosive, machining, and energy-absorbing conditions: a review. *Biomimetics*, 9(4), 209.

Li, J., Shi, S., Luo, W., & Wang, Q. (2020). Study on Explosion-Resistance of Biomimetic Layered Honeycomb Structure. *Advances in Civil Engineering*, 2020, 1-15. https://doi.org/10.1155/2020/5356145

Liyao, X. (2023). Analysis and Study of Porcelain Art in the Ming Jiajing Period. Frontiers in Art Research, 5(10), 90-96.

Mazzoleni, I. (2013). Architecture follows nature-biomimetic principles for innovative design. Crc Press.

Michaelson, C., & Portal, J. (2006). Chinese art in detail (Vol. 3). Harvard University Press.

Moore, S. (2018). Going for the Song. Apollo, 188(669), 58-64.

Motamedi, M., Warkiani, M. E., & Taylor, R. A. (2018). Transparent surfaces inspired by nature. *Advanced Optical Materials*, 6(14), 1800091.

Oranga, J., & Matere, A. (2023). Qualitative research: Essence, types and advantages. *Open Access Library Journal*, 10(12), 1-9.

Pagán, E. A., Salvatella, M. D. M. G., Pitarch, M. D., Muñoz, A. L., Toledo, M. D. M. M., Ruiz, J. M., ... & Puren, M. (2020). From silk to digital technologies: A gateway to new opportunities for creative industries, traditional crafts and designers. The SILKNOW case. *Sustainability*, 12(19), 8279.

Quanjin, G. A. O., & Simatrang, S. (2024). *The Transformation of Chinese Traditional painting into Ceramic Art Based on Taoism*. (Doctoral dissertation, Silpakorn University).

Smithsonian Institution. (2016). Chinese Ceramics: 13th-14th Century. Retrieved March 1, 2025, from Smithsonian Institution website: https://www.si.edu/exhibitions/chinese-ceramics-13th-14th-century-event-exhib-5533

Sun, X., Liu, X., Yang, X., & Song, B. (2021). Computer-aided three-dimensional ceramic product design. *Computer-Aided Design and Applications*, 19(S₃), 97-107.

Taylor, L. (2020). Ceramics Masterclass: Creative Techniques of 100 Great Artists. White Lion Publishing.

Udris-Borodavko, N., Oliinyk, V., Bozhko, T., Budnyk, A., & Hordiichuk, Y. (2023). Aesthetics and semiotics in 21st century visual communications: Pedagogical and sociocultural aspects. *Research Journal in Advanced Humanities*, 4(4), 22-40.

Vasenius, E., & Keskitalo, S. (2024). Designing and manufacturing the ceramic Mythology collection. Retrieved from https://www.theseus.fi/bitstream/handle/10024/874793/Keskitalo Vasenius.pdf

Wang, Y. H. (2006). *Learning from the past, providing for our future: an exploration of traditional Paiwanese craft as inspiration for contemporary ceramics.* (Doctoral dissertation, Swinburne).

Wu, W. T. (2021). *Driven by Power: Four Case Studies of the Possession and Appropriation of Chinese Porcelain in 18th-Century Europe and China*. (Doctoral dissertation).

Xu, Y., & Puntien, P. (2024). Ming Dynasty Blue And White Motifs And Their Influence On Contemporary Painting And Visual Arts. *Mediterranean Archaeology and Archaeometry*, 24(2), 86-100.

Yacubov, M. (2020). Nature Does it Better: Biomimicry in Structural and Architectural Design. (Unpublished master's thesis).

Yang, H. (2013). *Decorative plasterwork of Guangzhou during the dynasty Qing (1644-1911)*. (Doctoral dissertation, Univerza v Novi Gorici, Fakulteta za podiplomski študij).

Zhang, B., Zhang, X., Qiu, Y., Han, J., Hu, P., Hong, C., ... & Hu, P. (2015). Enhanced thermal shock resistance of ultra-high temperature ceramic by biomimetic surface modification. *Journal of Materials Chemistry A*, 3(5), 2199-2206.

Zhou, L. (2024). The shape and function of ritual vessels and the thought of creation in the Qing dynasty. *Mediterranean Archaeology and Archaeometry*, 24(2), 16-28.

ETHICAL DECLARATION

Conflict of interest: No declaration required. **Financing:** No reporting required. **Peer review:** Double anonymous peer review.